607 research outputs found

    Structural integrity and fatigue crack propagation life assessment of welded and weld-repaired structures

    Get PDF
    Structural integrity is the science and technology of the margin between safety and disaster. Proper evaluation of the structural integrity and fatigue life of any structure (aircraft, ship, railways, bridges, gas and oil transmission pipelines, etc.) is important to ensure the public safety, environmental protection, and economical consideration. Catastrophic failure of any structure can be avoided if structural integrity is assessed and necessary precaution is taken appropriately. Structural integrity includes tasks in many areas, such as structural analysis, failure analysis, nondestructive testing, corrosion, fatigue and creep analysis, metallurgy and materials, fracture mechanics, fatigue life assessment, welding metallurgy, development of repairing technologies, structural monitoring and instrumentation etc. In this research fatigue life assessment of welded and weld-repaired joints is studied both in numerically and experimentally. A new approach for the simulation of fatigue crack growth in two elastic materials has been developed and specifically, the concept has been applied to butt-welded joint in a straight plate and in tubular joints. In the proposed method, the formation of new surface is represented by an interface element based on the interface potential energy. This method overcomes the limitation of crack growth at an artificial rate of one element length per cycle. In this method the crack propagates only when the applied load reaches the critical bonding strength. The predicted results compares well with experimental results. The Gas Metal Arc welding processes has been simulated to predict post-weld distortion, residual stresses and development of restraining forces in a butt-welded joint. The effect of welding defects and bi-axial interaction of a circular porosity and a solidification crack on fatigue crack propagation life of butt-welded joints has also been investigated. After a weld has been repaired, the specimen was tested in a universal testing machine in order to determine fatigue crack propagation life. The fatigue crack propagation life of weld-repaired specimens was compared to un-welded and as-welded specimens. At the end of fatigue test, samples were cut from the fracture surfaces of typical welded and weld-repaired specimens and are examined under Scanning Electron Microscope (SEM) and characteristics features from these micrographs are explained

    Fatigue fracture and microstructural analysis of Friction Stir Welded butt joints of aerospace aluminum alloys

    Get PDF
    Friction-Stir-Welding (FSW) has been adopted as a major process for welding Aluminum aerospace structures. Al-2195, which is one of the new-generation Aluminum alloys that has been used on the external tank of the new super lightweight external tank of the space shuttle. The Lockheed Martin Space Systems (LMSS), Michoud Operations in New Orleans is continuously pursuing Friction-Stir-Welding technologies in its efforts to advance fabrication of the external tanks of the space shuttle. The future launch vehicles which will have to be reusable, m, an dates the structure to have good fatigue properties, which prompts an investigation into the fatigue behavior of the friction-stir-welded aerospace structures. The butt joint specimens of Al-2195 and Al-2219 are fatigue tested according to ASTM-E647. The effects of: (i) Stress ratios, (ii) Corrosion Preventive Compound (CPC), and (iii) Periodic Overloading on fatigue life are investigated. Scanning electron microscopy (SEM) is used to examine the failure surface, and examine the different modes of crack propagation i.e. tensile, shear, and brittle modes. It is found that fatigue life increases with increase in stress ratio; the fatigue life increases from 30-38% with the use of CPC, the fatigue life increases 8-12 times with periodic overloading, , and crack closure phenomenon predominates the fatigue facture. Numerical Analysis in FEA has been used to model a fatigue life prediction scheme for these structures, the interface element technique with critical bonding strength criterion for formation of new surface has been used to model crack propagation. The Linear Elastic Fracture Mechanics (LEFM) stress intensity factor is calculated using FEA, and the fatigue life predictions made using this method are within acceptable 10-20% of the experimental fatigue life obtained. This method overcomes the limitation of the traditional node release scheme, and closely matches the physics of crack propagation

    A stress analysis method for fatigue life prediction of welded structures

    Get PDF
    In the case of structural weldments, the procedure for estimating fatigue life requires information concerning geometry of the object, loads and material. Detailed knowledge of stress fields in the critical regions of weldments is used to determine the fatigue life. The main theme of the research discussed in this thesis is to provide details of the methodology which has been developed to determine peak stress and associated non-linear through thickness stress distribution at the critical weld toe location by using only the geometry dependent stress concentration factors along with appropriate unique reference stress calculated in an efficient manner e.g. without modeling geometrical weld toe details. The peak stress at the weld toe can be subsequently used for estimating the fatigue crack initiation life. The non-linear through thickness stress distribution and the weight function method can be used for the determination of stress intensity factors and for the analysis of subsequent fatigue crack growth. Accurate peak stress estimation requires 3D fine mesh finite element (FE) models, accounting for the micro-geometrical features, such as the weld toe angle and weld toe radius. Such models are computationally expensive and therefore impractical. On the other hand, stresses at sharp weld corners obtained from 3D coarse FE meshes are inaccurate and cannot be used directly for fatigue life estimations. A robust, sufficiently accurate, efficient and practical approach is proposed for fatigue life estimation of welded structures based on 3D coarse mesh FE models. Another objective is to establish a methodology which is capable of accounting for the actual variability of stress concentration factors at welds, welding defects such as misalignment and incomplete penetration resulting from manufacturing processes. The proposed approach is capable of accounting for the effects from use of different material and effect of residual stresses from welding process. Residual stress information is obtained from a welding process simulation model, which has been validated against measured residual stress data. The proposed methodology has been validated using numerical and experimental data by analyzing different weldments of varying geometrical and load configurations. Further, the applicability of the stress field obtained from the proposed methodology is demonstrated by using it in a forward looking “Total Fatigue Life” concept based only on the fracture mechanics approach

    Fatigue and fracture mechanics of offshore wind turbine support structures

    Get PDF
    Wind power, especially offshore, is considered to be one of the most promising sources of ‘clean’ energy towards meeting the EU targets for 2020 and 2050. However, its popularity has always fluctuated with the price of fossil fuels since nowadays wind electricity production cannot compete with nuclear or coal electricity production. Support structures are thought to be one of the main drivers for reducing costs in order to make the wind industry more economically efficient. Foundations and towers should be fit for purpose, extending their effective service life but avoiding costs of oversizing. An exhaustive review of the background and state of the art of the Fatigue-Life assessment approaches has been carried out, combining analysis of the gathered experimental data and the development of Finite Element models based on contemporary 3D solid models with diverse Regression Analyses, in order to identify their weakness and evaluate their accuracy. This research shows that the guides and practices currently employed in the design and during the operation of the offshore wind turbine support structures are obsolete and not useful for optimisation, which generally leads to conservationism and an unnecessary increase in costs. The basis for a comprehensive update of the Girth Weld and Tubular Joint S-N curves and the Stress Concentration Factors of Tubular Joints has been set out. Furthermore, a reliable methodology for deriving the Stress Intensity Factor at the deepest point of a semi-elliptical surface saddle crack in a tubular welded T-joint has been proposed

    Behaviour Of Grout Infilled Steel Tubular Members And Joints

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Stress intensity factors for ship and offshore structural details

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore